Paper to be discussed:
High Tc Fe-As based superconductors with skutterudite intermediary layers
- Ni Ni,
- Jared M. Allred,
- Benny C. Chan, and
- Robert Joseph Cava
Abstract:
It has been argued that the very high transition temperatures of the highest Tccuprate superconductors are facilitated by enhanced CuO2 plane coupling through heavy metal oxide intermediary layers. Whether enhanced coupling through intermediary layers can also influence Tc in the new high Tc iron arsenide superconductors has never been tested due the lack of appropriate systems for study. Here we report the crystal structures and properties of two iron arsenide superconductors, Ca10(Pt3As8)(Fe2As2)5 (the “10-3-8 phase”) and Ca10(Pt4As8)(Fe2As2)5 (the “10-4-8 phase”). Based on -Ca-(PtnAs8)-Ca-Fe2As2- layer stacking, these are very similar compounds for which the most important differences lie in the structural and electronic characteristics of the intermediary platinum arsenide layers. Electron doping through partial substitution of Pt for Fe in the FeAs layers leads to Tc of 11 K in the 10-3-8 phase and 26 K in the 10-4-8 phase. The often-cited empirical rule in the arsenide superconductor literature relating Tc to As-Fe-As bond angles does not explain the observed differences inTc of the two phases; rather, comparison suggests the presence of stronger FeAs interlayer coupling in the 10-4-8 phase arising from the two-channel interlayer interactions and the metallic nature of its intermediary Pt4As8 layer. The interlayer coupling is thus revealed as important in enhancing Tc in the iron pnictide superconductors.
Time: Oct. 23 2012, Tuesday noon.
Location: Rm. 435, Nicholson Hall
Foods and drinks will be provided.
No comments:
Post a Comment